Review: Composite Functions - 9/21/16

1 Transformations of Functions

Suppose $c>0$. Then $y=f(x)+c$ shifts the graph of $f(x) c$ units upwards, and $y=f(x)-c$ shifts the graph of $f(x) c$ units downwards.

Suppose $c>0$. Then $y=f(x+c)$ shifts the graph of $f(x) c$ units to the left, and $y=f(x-c)$ shifts the graph of $f(x) c$ units to the right.

Suppose $c>1$. Then $y=c f(x)$ stretches the graph vertically by a factor of c, and $y=\frac{1}{c} f(x)$ shrinks the graph vertically by a factor of c.

Suppose $c>1$. Then $y=f(c x)$ shrinks the graph horizontally by a factor of c, and $y=f\left(\frac{1}{c} x\right)$ stretches the graph horizontally by a factor of c.

$y=-f(x)$ reflects the graph over the x axis.

$y=f(-x)$ reflects the graph over the y axis.

Function	Action	Domain	Range
$f(x)$	none	$[a, b]$	$[d, e]$
$f(x)+c$	translate c units up	$[a, b]$	$[d+c, e+c]$
$f(x)-c$	translate c units down	$[a, b]$	$[d-c, e-c]$
$f(x+c)$	translate c units left	$[a-c, b-c]$	$[d, e]$
$f(x-c)$	translate c units right	$[a+c, b+c]$	$[d, e]$
$c f(x)$	stretch vertically by a factor of c	$[a, b]$	$[c d, c e]$
$\frac{1}{c} f(x)$	shrink vertically by a factor of c	$[a, b]$	$\left[\frac{d}{c}, \frac{e}{c}\right]$
$f(c x)$	shrink horizontally by a factor of c	$\left[\frac{a}{c}, \frac{b}{c}\right]$	$[d, e]$
$f\left(\frac{1}{c} x\right)$	stretch horizontally by a factor of c	$[c a, c b]$	$[d, e]$
$-f(x)$	reflect over x axis	$[a, b]$	$[-e,-d]$
$f(-x)$	reflect over y axis	$[-b,-a]$	$[d, e]$

Practice Problems

1. Let f by a function with domain $[3,7]$ and range $[-1,5]$. What is the domain and range of:
(a) $-f(x+4)$
(b) $3 f(x)-7$
(c) $f(-x-3)$
2. Sketch the graph of $f(x)=2(x+3)^{2}+4$.
3. Sketch the graph of $g(x)=-x^{3}-2$.

2 Some pictures of x^{a}

- a is a positive integer

x^{n} where n is even
x^{n} where n is odd
- $a=\frac{1}{n}$ where n is a positive integer

$\sqrt[n]{x}$ where n is even

$\sqrt[n]{x}$ where n is odd
- $a=-1$

3 Composition

Example 3.0.1 Let $h(x)=(4 x+3)^{3}$. Write it as a composition of two functions. Here $h(x)=$ $(f \circ g)(x)$ where $f(x)=x^{3}$ and $g(x)=4 x+3$.

Example 3.0.2 Let $h(x)=\left(x^{2}-4 x+4\right)^{3}$. We can either break this into $h(x)=(f \circ g)(x)$ where $f(x)=x^{3}$ and $g(x)=x^{2}-4 x+4$, or we can write it as $h(x)=(f \circ a \circ b)(x)$ where $f(x)=x^{3}$, $a(x)=x^{2}$, and $b(x)=x-2$.

Practice Problems

1. Write $h(x)=\left(x^{2}-4 x+4\right)^{2}$ as a composition of two functions. Now try coming up with a different set of two functions that also works.
2. Write $h(x)=\sqrt[4]{\left(x^{2}+6 x+9\right)^{3}}$ as a composition of two functions. As a composition of three functions. As a composition of four functions.
