Review: Composite Functions - 9/21/16

1 Transformations of Functions

Suppose c > 0. Then y = f(x) + c shifts the graph of f(x) c units upwards, and y = f(x) - c shifts the graph of f(x) c units downwards.

Suppose c > 0. Then y = f(x + c) shifts the graph of f(x) c units to the left, and y = f(x - c) shifts the graph of f(x) c units to the right.

Suppose c > 1. Then y = cf(x) stretches the graph vertically by a factor of c, and $y = \frac{1}{c}f(x)$ shrinks the graph vertically by a factor of c.

Suppose c > 1. Then y = f(cx) shrinks the graph horizontally by a factor of c, and $y = f(\frac{1}{c}x)$ stretches the graph horizontally by a factor of c.

y = -f(x) reflects the graph over the x axis.

y = f(-x) reflects the graph over the y axis.

Function	Action	Domain	Range
f(x)	none	[a,b]	[d, e]
f(x) + c	translate c units up	[a,b]	[d+c, e+c]
f(x) - c	translate c units down	[a,b]	[d-c, e-c]
f(x+c)	translate c units left	[a-c,b-c]	[d, e]
f(x-c)	translate c units right	[a+c,b+c]	[d, e]
cf(x)	stretch vertically by a factor of c	[a,b]	[cd, ce]
$\frac{1}{c}f(x)$	shrink vertically by a factor of c	[a,b]	$\left[\frac{d}{c}, \frac{e}{c}\right]$
f(cx)	shrink horizontally by a factor of c	$\left[\frac{a}{c}, \frac{b}{c}\right]$	[d, e]
$f(\frac{1}{c}x)$	stretch horizontally by a factor of c	[ca, cb]	[d, e]
-f(x)	reflect over x axis	[a,b]	[-e, -d]
f(-x)	reflect over y axis	[-b, -a]	[d,e]

Practice Problems

1. Let f by a function with domain [3, 7] and range [-1, 5]. What is the domain and range of:

(a)
$$-f(x+4)$$

- (b) 3f(x) 7
- (c) f(-x-3)
- 2. Sketch the graph of $f(x) = 2(x+3)^2 + 4$.
- 3. Sketch the graph of $g(x) = -x^3 2$.

2 Some pictures of x^a

• *a* is a positive integer

• $a = \frac{1}{n}$ where *n* is a positive integer

• a = -1

3 Composition

Example 3.0.1 Let $h(x) = (4x+3)^3$. Write it as a composition of two functions. Here $h(x) = (f \circ g)(x)$ where $f(x) = x^3$ and g(x) = 4x+3.

Example 3.0.2 Let $h(x) = (x^2 - 4x + 4)^3$. We can either break this into $h(x) = (f \circ g)(x)$ where $f(x) = x^3$ and $g(x) = x^2 - 4x + 4$, or we can write it as $h(x) = (f \circ a \circ b)(x)$ where $f(x) = x^3$, $a(x) = x^2$, and b(x) = x - 2.

Practice Problems

- 1. Write $h(x) = (x^2 4x + 4)^2$ as a composition of two functions. Now try coming up with a different set of two functions that also works.
- 2. Write $h(x) = \sqrt[4]{(x^2 + 6x + 9)^3}$ as a composition of two functions. As a composition of three functions. As a composition of four functions.